Calculus A for Economics

Exercise Number 8

1) Verify Rolle's Theorem for the function $y = x^3 + 4x^2 - 7x - 10$ in the interval [-1, 2]. 2) Let $f(x) = \frac{2-x^2}{x^4}$. Check that f(-1) = f(1) and show that $f'(x) \neq 0$ for all $x \in [-1, 1]$

where f'(x) exists. Explain why this is not a contradiction to Rolle's Theorem.

3) Prove that if the equation $a_0x^n + a_1x^{n-1} + \cdots + a_{n-1}x = 0$ has a root at $x_0 > 0$, then the equation $na_0x^{n-1} + (n-1)a_1x^{n-2} + \cdots + a_{n-1} = 0$ has a positive root at x_1 where $0 < x_1 < x_0$.

4) Let $c \in \mathbf{R}$. Prove that the equation $x^3 - 3x + c = 0$ has no two distinct roots in (0, 1).

5) Let $f(x) = 3\sqrt{x} - 4x$. Find $1 \le c \le 4$ which satisfies the mean value Theorem in [1, 4].

6) Assume that $|f'(x)| \le 1$ for all x. Prove that $|f(x_1) - f(x_2)| \le |x_1 - x_2|$ for all x_1 and x_2 .

7) Use the mean value Theorem to prove

$$\frac{a-b}{a} \le \ln\frac{a}{b} \le \frac{a-b}{b}$$

for all $0 < b \leq a$.

8) Let n ne a natural number. Use the mean value Theorem to prove

$$nb^{n-1}(a-b) < a^n - b^n < na^{n-1}(a-b)$$

for all a > b.

9) For the following functions, find possible extreme points:

a)
$$y = x^3 + 3x - 2$$

b) $y = (1 - x)^2 (1 + x)$
c) $y = \frac{1}{|x - 2|}$
d) $y = |x^2 - 16|$
e) $y = x - \ln(1 + x^2)$
f) $y = (x^2 - 2x)\ln x - \frac{3}{2}x^2 + 4x$
g) $y = \frac{1}{x + 1} - \frac{1}{x + 2}$

10) Let a and b be two adjacent roots of a polynomial f(x). (By adjacent we mean that there is no point c such that a < c < b and that c is a root of f(x)). It follows from division of polynomials that we can write f(x) = (x - a)(x - b)g(x) where g(x) is a polynomial. You

do not need to prove this. Assume that $g(a) \neq 0$ and that $g(b) \neq 0$.

a) Prove that g(a)g(b) > 0.

b) Prove that there is a point x such that a < x < b and that f'(x) = 0.

11) Give an example of a function f(x) such that f'(x) exists for all x > M, and such that $\lim_{x\to\infty} f(x)$ does not exists but $\lim_{x\to\infty} f'(x)$ do exist. Here M is some nonnegative integer.

12) Without using a calculator prove that

$$\frac{1}{9} < \sqrt{66} - 8 < \frac{1}{8}$$