Calculus A for Economics

Exercise Number 8

1) Verify Rolle's Theorem for the function $y=x^{3}+4 x^{2}-7 x-10$ in the interval $[-1,2]$.
2) Let $f(x)=\frac{2-x^{2}}{x^{4}}$. Check that $f(-1)=f(1)$ and show that $f^{\prime}(x) \neq 0$ for all $x \in[-1,1]$ where $f^{\prime}(x)$ exists. Explain why this is not a contradiction to Rolle's Theorem.
3) Prove that if the equation $a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x=0$ has a root at $x_{0}>0$, then the equation $n a_{0} x^{n-1}+(n-1) a_{1} x^{n-2}+\cdots+a_{n-1}=0$ has a positive root at x_{1} where $0<x_{1}<x_{0}$.
4) Let $c \in \mathbf{R}$. Prove that the equation $x^{3}-3 x+c=0$ has no two distinct roots in $(0,1)$.
5) Let $f(x)=3 \sqrt{x}-4 x$. Find $1 \leq c \leq 4$ which satisfies the mean value Theorem in [1, 4].
6) Assume that $\left|f^{\prime}(x)\right| \leq 1$ for all x. Prove that $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq\left|x_{1}-x_{2}\right|$ for all x_{1} and x_{2}.
7) Use the mean value Theorem to prove

$$
\frac{a-b}{a} \leq \ln \frac{a}{b} \leq \frac{a-b}{b}
$$

for all $0<b \leq a$.
8) Let n ne a natural number. Use the mean value Theorem to prove

$$
n b^{n-1}(a-b)<a^{n}-b^{n}<n a^{n-1}(a-b)
$$

for all $a>b$.
9) For the following functions, find possible extreme points:
a) $y=x^{3}+3 x-2$
b) $y=(1-x)^{2}(1+x)$
c) $y=\frac{1}{|x-2|}$
d) $y=\left|x^{2}-16\right|$
e) $y=x-\ln \left(1+x^{2}\right)$
f) $y=\left(x^{2}-2 x\right) \ln x-\frac{3}{2} x^{2}+4 x$
g) $y=\frac{1}{x+1}-\frac{1}{x+2}$
10) Let a and b be two adjacent roots of a polynomial $f(x)$. (By adjacent we mean that there is no point c such that $a<c<b$ and that c is a root of $f(x))$. It follows from division of polynomials that we can write $f(x)=(x-a)(x-b) g(x)$ where $g(x)$ is a polynomial. You
do not need to prove this. Assume that $g(a) \neq 0$ and that $g(b) \neq 0$.
a) Prove that $g(a) g(b)>0$.
b) Prove that there is a point x such that $a<x<b$ and that $f^{\prime}(x)=0$.
11) Give an example of a function $f(x)$ such that $f^{\prime}(x)$ exists for all $x>M$, and such that $\lim _{x \rightarrow \infty} f(x)$ does not exists but $\lim _{x \rightarrow \infty} f^{\prime}(x)$ do exist. Here M is some nonnegative integer.
12) Without using a calculator prove that

$$
\frac{1}{9}<\sqrt{66}-8<\frac{1}{8}
$$

